Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1
Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 11-38.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We consider the stationary one dimensional Schrödinger-Poisson system on a bounded interval with a background potential describing a quantum well. Using a partition function which forces the particles to remain in the quantum well, the limit h®0 in the nonlinear system leads to a uniquely solved nonlinear problem with concentrated particle density. It allows to conclude about the convergence of the solution.
Keywords: Schrödinger-Poisson System, Asymptotic Analysis, Semi-Classical Analysis, Spectral Theory
@article{SMJ2_2010_35_1_a1,
     author = {Faraj, A.},
     title = {Asymptotic {Analysis} of a {Schr\"odinger-Poisson} {System} with {Quantum} {Wells} and {Macroscopic} {Nonlinearities} in {Dimension} 1},
     journal = {Serdica Mathematical Journal},
     pages = {11--38},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a1/}
}
TY  - JOUR
AU  - Faraj, A.
TI  - Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1
JO  - Serdica Mathematical Journal
PY  - 2010
SP  - 11
EP  - 38
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a1/
LA  - en
ID  - SMJ2_2010_35_1_a1
ER  - 
%0 Journal Article
%A Faraj, A.
%T Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1
%J Serdica Mathematical Journal
%D 2010
%P 11-38
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a1/
%G en
%F SMJ2_2010_35_1_a1
Faraj, A. Asymptotic Analysis of a Schrödinger-Poisson System with Quantum Wells and Macroscopic Nonlinearities in Dimension 1. Serdica Mathematical Journal, Tome 35 (2010) no. 1, pp. 11-38. http://geodesic.mathdoc.fr/item/SMJ2_2010_35_1_a1/