Probabilistic Approach to the Neumann Problem for a Symmetric Operator
Serdica Mathematical Journal, Tome 35 (2009) no. 4, pp. 317-342
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We give a probabilistic formula for the solution of a non-homogeneous Neumann problem for a symmetric nondegenerate operator of second order in a bounded domain. We begin with a g-Hölder matrix and a C^1,g domain, g > 0, and then consider extensions. The solutions are expressed as a double layer potential instead of a single layer potential; in particular a new boundary function is discovered and boundary random walk methods can be used for simulations. We use tools from harmonic analysis and probability theory.
Keywords:
Neumann and Steklov Problems, Exponential Ergodicity, Double Layer Potential, Reflecting Diffusion, Lipschitz Domain
@article{SMJ2_2009_35_4_a0,
author = {Bench\'erif-Madani, Abdelatif},
title = {Probabilistic {Approach} to the {Neumann} {Problem} for a {Symmetric} {Operator}},
journal = {Serdica Mathematical Journal},
pages = {317--342},
year = {2009},
volume = {35},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/}
}
Benchérif-Madani, Abdelatif. Probabilistic Approach to the Neumann Problem for a Symmetric Operator. Serdica Mathematical Journal, Tome 35 (2009) no. 4, pp. 317-342. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/