Probabilistic Approach to the Neumann Problem for a Symmetric Operator
Serdica Mathematical Journal, Tome 35 (2009) no. 4, pp. 317-342.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We give a probabilistic formula for the solution of a non-homogeneous Neumann problem for a symmetric nondegenerate operator of second order in a bounded domain. We begin with a g-Hölder matrix and a C^1,g domain, g > 0, and then consider extensions. The solutions are expressed as a double layer potential instead of a single layer potential; in particular a new boundary function is discovered and boundary random walk methods can be used for simulations. We use tools from harmonic analysis and probability theory.
Keywords: Neumann and Steklov Problems, Exponential Ergodicity, Double Layer Potential, Reflecting Diffusion, Lipschitz Domain
@article{SMJ2_2009_35_4_a0,
     author = {Bench\'erif-Madani, Abdelatif},
     title = {Probabilistic {Approach} to the {Neumann} {Problem} for a {Symmetric} {Operator}},
     journal = {Serdica Mathematical Journal},
     pages = {317--342},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/}
}
TY  - JOUR
AU  - Benchérif-Madani, Abdelatif
TI  - Probabilistic Approach to the Neumann Problem for a Symmetric Operator
JO  - Serdica Mathematical Journal
PY  - 2009
SP  - 317
EP  - 342
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/
LA  - en
ID  - SMJ2_2009_35_4_a0
ER  - 
%0 Journal Article
%A Benchérif-Madani, Abdelatif
%T Probabilistic Approach to the Neumann Problem for a Symmetric Operator
%J Serdica Mathematical Journal
%D 2009
%P 317-342
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/
%G en
%F SMJ2_2009_35_4_a0
Benchérif-Madani, Abdelatif. Probabilistic Approach to the Neumann Problem for a Symmetric Operator. Serdica Mathematical Journal, Tome 35 (2009) no. 4, pp. 317-342. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_4_a0/