Compound Compound Poisson Risk Model
Serdica Mathematical Journal, Tome 35 (2009) no. 3, pp. 301-310.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The compound Poisson risk models are widely used in practice. In this paper the counting process in the insurance risk model is a compound Poisson process. The model is called Compound Compound Poisson Risk Model. Some basic properties and ruin probability are given. We analyze the model under the proportional reinsurance. The optimal retention level and the corresponding adjustment coefficient are obtained. The particular case of the Pólya-Aeppli risk model is discussed.
Keywords: Compound Poisson Process, Pólya-aeppli Risk Model, Ruin Probability, Cramér-lundberg Approximation
@article{SMJ2_2009_35_3_a4,
     author = {Minkova, Leda D.},
     title = {Compound {Compound} {Poisson} {Risk} {Model}},
     journal = {Serdica Mathematical Journal},
     pages = {301--310},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a4/}
}
TY  - JOUR
AU  - Minkova, Leda D.
TI  - Compound Compound Poisson Risk Model
JO  - Serdica Mathematical Journal
PY  - 2009
SP  - 301
EP  - 310
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a4/
LA  - en
ID  - SMJ2_2009_35_3_a4
ER  - 
%0 Journal Article
%A Minkova, Leda D.
%T Compound Compound Poisson Risk Model
%J Serdica Mathematical Journal
%D 2009
%P 301-310
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a4/
%G en
%F SMJ2_2009_35_3_a4
Minkova, Leda D. Compound Compound Poisson Risk Model. Serdica Mathematical Journal, Tome 35 (2009) no. 3, pp. 301-310. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a4/