Courbure et Polygone de Newton
Serdica Mathematical Journal, Tome 35 (2009) no. 2, pp. 195-206.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The object of this article relates to the study of the complex algebraic curves by using the concept of envelope convex. One proposes to characterize the points of a holomorphic complex curve (C) and to associate a metric invariant to them ( generalized curvature), by using the equations of the various segments constituting the polygon of Newton associated with (C).
Keywords: Algebraic Curve, Curvature, Non Standard Analysis
@article{SMJ2_2009_35_2_a4,
     author = {Hannachi M, M. and Mezaghcha, K.},
     title = {Courbure et {Polygone} de {Newton}},
     journal = {Serdica Mathematical Journal},
     pages = {195--206},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a4/}
}
TY  - JOUR
AU  - Hannachi M, M.
AU  - Mezaghcha, K.
TI  - Courbure et Polygone de Newton
JO  - Serdica Mathematical Journal
PY  - 2009
SP  - 195
EP  - 206
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a4/
LA  - en
ID  - SMJ2_2009_35_2_a4
ER  - 
%0 Journal Article
%A Hannachi M, M.
%A Mezaghcha, K.
%T Courbure et Polygone de Newton
%J Serdica Mathematical Journal
%D 2009
%P 195-206
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a4/
%G en
%F SMJ2_2009_35_2_a4
Hannachi M, M.; Mezaghcha, K. Courbure et Polygone de Newton. Serdica Mathematical Journal, Tome 35 (2009) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a4/