Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space
Serdica Mathematical Journal, Tome 35 (2009) no. 2, pp. 147-168.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we consider an L^2 type space of scalar functions L^2 M, A (R u iR) which can be, in particular, the usual L^2 space of scalar functions on R u iR. We find conditions for density of polynomials in this space using a connection with the L^2 space of square-integrable matrix-valued functions on R with respect to a non-negative Hermitian matrix measure. The completness of L^2 M, A (R u iR ) is also established.
Keywords: Density of Polynomials, Moment Problem, Measure
@article{SMJ2_2009_35_2_a2,
     author = {Klotz, Lutz and Zagorodnyuk, Sergey M.},
     title = {Density of {Polynomials} in the {L^2} {Space} on the {Real} and the {Imaginary} {Axes} and in a {Sobolev} {Space}},
     journal = {Serdica Mathematical Journal},
     pages = {147--168},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a2/}
}
TY  - JOUR
AU  - Klotz, Lutz
AU  - Zagorodnyuk, Sergey M.
TI  - Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space
JO  - Serdica Mathematical Journal
PY  - 2009
SP  - 147
EP  - 168
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a2/
LA  - en
ID  - SMJ2_2009_35_2_a2
ER  - 
%0 Journal Article
%A Klotz, Lutz
%A Zagorodnyuk, Sergey M.
%T Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space
%J Serdica Mathematical Journal
%D 2009
%P 147-168
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a2/
%G en
%F SMJ2_2009_35_2_a2
Klotz, Lutz; Zagorodnyuk, Sergey M. Density of Polynomials in the L^2 Space on the Real and the Imaginary Axes and in a Sobolev Space. Serdica Mathematical Journal, Tome 35 (2009) no. 2, pp. 147-168. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_2_a2/