Generalized D-Symmetric Operators I
Serdica Mathematical Journal, Tome 34 (2008) no. 3, pp. 557-562.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let H be an infinite-dimensional complex Hilbert space and let A, B ∈ L(H), where L(H) is the algebra of operators on H into itself. Let δAB: L(H) → L(H) denote the generalized derivation δAB(X) = AX − XB. This note will initiate a study on the class of pairs (A,B) such that [‾(R(δAB))] = [‾(R(δB*A*))]; i.e. [‾(R(δAB))] is self-adjoint.
Keywords: Generalized Derivation, Self-Adjoint Derivation Ranges, D-Symmetric Operators
@article{SMJ2_2008_34_3_a2,
     author = {Bouali, S. and Ech-chad, M.},
     title = {Generalized {D-Symmetric} {Operators} {I}},
     journal = {Serdica Mathematical Journal},
     pages = {557--562},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_3_a2/}
}
TY  - JOUR
AU  - Bouali, S.
AU  - Ech-chad, M.
TI  - Generalized D-Symmetric Operators I
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 557
EP  - 562
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_3_a2/
LA  - en
ID  - SMJ2_2008_34_3_a2
ER  - 
%0 Journal Article
%A Bouali, S.
%A Ech-chad, M.
%T Generalized D-Symmetric Operators I
%J Serdica Mathematical Journal
%D 2008
%P 557-562
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_3_a2/
%G en
%F SMJ2_2008_34_3_a2
Bouali, S.; Ech-chad, M. Generalized D-Symmetric Operators I. Serdica Mathematical Journal, Tome 34 (2008) no. 3, pp. 557-562. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_3_a2/