An Iterative Procedure for Solving Nonsmooth Generalized Equation
Serdica Mathematical Journal, Tome 34 (2008) no. 2, pp. 441-454.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous at (0,x*), where g:X→ Y is a function, whose Fréchet derivative is L-Lipschitz.
Keywords: Set-Valued Maps, Generalized Equation, Linear Convergence, Aubin Continuity
@article{SMJ2_2008_34_2_a4,
     author = {Marinov, Rumen Tsanev},
     title = {An {Iterative} {Procedure} for {Solving} {Nonsmooth} {Generalized} {Equation}},
     journal = {Serdica Mathematical Journal},
     pages = {441--454},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a4/}
}
TY  - JOUR
AU  - Marinov, Rumen Tsanev
TI  - An Iterative Procedure for Solving Nonsmooth Generalized Equation
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 441
EP  - 454
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a4/
LA  - en
ID  - SMJ2_2008_34_2_a4
ER  - 
%0 Journal Article
%A Marinov, Rumen Tsanev
%T An Iterative Procedure for Solving Nonsmooth Generalized Equation
%J Serdica Mathematical Journal
%D 2008
%P 441-454
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a4/
%G en
%F SMJ2_2008_34_2_a4
Marinov, Rumen Tsanev. An Iterative Procedure for Solving Nonsmooth Generalized Equation. Serdica Mathematical Journal, Tome 34 (2008) no. 2, pp. 441-454. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a4/