q-Leibniz Algebras
Serdica Mathematical Journal, Tome 34 (2008) no. 2, pp. 415-440.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

An algebra (A,ο) is called Leibniz if aο(bοc) = (a ο b)ο c-(a ο c) ο b for all a,b,c ∈ A. We study identities for the algebras A(q) = (A,οq), where a οq b = a ο b+q b ο a is the q-commutator. Let Char K ≠ 2,3. We show that the class of q-Leibniz algebras is defined by one identity of degree 3 if q2 ≠ 1, q ≠−2, by two identities of degree 3 if q = −2, and by the commutativity identity and one identity of degree 4 if q = 1. In the case of q = −1 we construct two identities of degree 5 that form a base of identities of degree 5 for −1-Leibniz algebras. Any identity of degree 5 for −1-Leibniz algebras follows from the anti-commutativity identity.
Keywords: Leibniz Algebras, Zinbiel Algebras, Omni-Lie Algebras, Polynomial Identities, q-Commutators
@article{SMJ2_2008_34_2_a3,
     author = {Dzhumadil'daev, A. S.},
     title = {q-Leibniz {Algebras}},
     journal = {Serdica Mathematical Journal},
     pages = {415--440},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a3/}
}
TY  - JOUR
AU  - Dzhumadil'daev, A. S.
TI  - q-Leibniz Algebras
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 415
EP  - 440
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a3/
LA  - en
ID  - SMJ2_2008_34_2_a3
ER  - 
%0 Journal Article
%A Dzhumadil'daev, A. S.
%T q-Leibniz Algebras
%J Serdica Mathematical Journal
%D 2008
%P 415-440
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a3/
%G en
%F SMJ2_2008_34_2_a3
Dzhumadil'daev, A. S. q-Leibniz Algebras. Serdica Mathematical Journal, Tome 34 (2008) no. 2, pp. 415-440. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_2_a3/