On The Cauchy Problem for Non Effectively Hyperbolic Operators, The Ivrii-Petkov-Hörmander Condition and the Gevrey Well Posedness
Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 155-178
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we prove that for non effectively hyperbolic operators with smooth double characteristics with the Hamilton map exhibiting
a Jordan block of size 4 on the double characteristic manifold the Cauchy
problem is well posed in the Gevrey 6 class if the strict Ivrii-Petkov-Hörmander condition is satisfied.
Keywords:
Cauchy Problem, Non Effectively Hyperbolic, Gevrey Well-Posedness, Null Bicharacteristic, Hamilton Map, Elementary Decomposition, Positive Trace
@article{SMJ2_2008_34_1_a6,
author = {Nishitani, Tatsuo},
title = {On {The} {Cauchy} {Problem} for {Non} {Effectively} {Hyperbolic} {Operators,} {The} {Ivrii-Petkov-H\"ormander} {Condition} and the {Gevrey} {Well} {Posedness}},
journal = {Serdica Mathematical Journal},
pages = {155--178},
year = {2008},
volume = {34},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a6/}
}
TY - JOUR AU - Nishitani, Tatsuo TI - On The Cauchy Problem for Non Effectively Hyperbolic Operators, The Ivrii-Petkov-Hörmander Condition and the Gevrey Well Posedness JO - Serdica Mathematical Journal PY - 2008 SP - 155 EP - 178 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a6/ LA - en ID - SMJ2_2008_34_1_a6 ER -
%0 Journal Article %A Nishitani, Tatsuo %T On The Cauchy Problem for Non Effectively Hyperbolic Operators, The Ivrii-Petkov-Hörmander Condition and the Gevrey Well Posedness %J Serdica Mathematical Journal %D 2008 %P 155-178 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a6/ %G en %F SMJ2_2008_34_1_a6
Nishitani, Tatsuo. On The Cauchy Problem for Non Effectively Hyperbolic Operators, The Ivrii-Petkov-Hörmander Condition and the Gevrey Well Posedness. Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 155-178. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a6/