Generalized Backscattering and the Lax-Phillips Transform
Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 355-372.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Using the free-space translation representation (modified Radon transform) of Lax and Phillips in odd dimensions, it is shown that the generalized backscattering transform (so outgoing angle w = Sq in terms of the incoming angle with S orthogonal and Id-S invertible) may be further restricted to give an entire, globally Fredholm, operator on appropriate Sobolev spaces of potentials with compact support. As a corollary we show that the modified backscattering map is a local isomorphism near elements of a generic set of potentials.
Keywords: Radon Transform, Fredholm Family, Holomorphy, Potential Scattering, Inversion
@article{SMJ2_2008_34_1_a13,
     author = {Melrose, Richard and Uhlmann, Gunther},
     title = {Generalized {Backscattering} and the {Lax-Phillips} {Transform}},
     journal = {Serdica Mathematical Journal},
     pages = {355--372},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a13/}
}
TY  - JOUR
AU  - Melrose, Richard
AU  - Uhlmann, Gunther
TI  - Generalized Backscattering and the Lax-Phillips Transform
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 355
EP  - 372
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a13/
LA  - en
ID  - SMJ2_2008_34_1_a13
ER  - 
%0 Journal Article
%A Melrose, Richard
%A Uhlmann, Gunther
%T Generalized Backscattering and the Lax-Phillips Transform
%J Serdica Mathematical Journal
%D 2008
%P 355-372
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a13/
%G en
%F SMJ2_2008_34_1_a13
Melrose, Richard; Uhlmann, Gunther. Generalized Backscattering and the Lax-Phillips Transform. Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 355-372. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a13/