On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem
Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 311-328.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we study an ODE in the complex plane. This is a key step in the search of new necessary conditions for the well posedness of the Cauchy Problem for hyperbolic operators with double characteristics.
Keywords: Cauchy Problem, Zeroes of Entire Functions, Asymptotic Expansions, Hamilton Systems
@article{SMJ2_2008_34_1_a11,
     author = {Bernardi, Enrico and Bove, Antonio},
     title = {On an {ODE} {Relevant} for the {General} {Theory} of the {Hyperbolic} {Cauchy} {Problem}},
     journal = {Serdica Mathematical Journal},
     pages = {311--328},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/}
}
TY  - JOUR
AU  - Bernardi, Enrico
AU  - Bove, Antonio
TI  - On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 311
EP  - 328
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/
LA  - en
ID  - SMJ2_2008_34_1_a11
ER  - 
%0 Journal Article
%A Bernardi, Enrico
%A Bove, Antonio
%T On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem
%J Serdica Mathematical Journal
%D 2008
%P 311-328
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/
%G en
%F SMJ2_2008_34_1_a11
Bernardi, Enrico; Bove, Antonio. On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem. Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 311-328. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/