On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem
Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 311-328
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we study an ODE in the complex plane. This is a key step in the search of new necessary conditions for the well posedness of the Cauchy Problem for hyperbolic operators with double characteristics.
Keywords:
Cauchy Problem, Zeroes of Entire Functions, Asymptotic Expansions, Hamilton Systems
@article{SMJ2_2008_34_1_a11,
author = {Bernardi, Enrico and Bove, Antonio},
title = {On an {ODE} {Relevant} for the {General} {Theory} of the {Hyperbolic} {Cauchy} {Problem}},
journal = {Serdica Mathematical Journal},
pages = {311--328},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/}
}
TY - JOUR AU - Bernardi, Enrico AU - Bove, Antonio TI - On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem JO - Serdica Mathematical Journal PY - 2008 SP - 311 EP - 328 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/ LA - en ID - SMJ2_2008_34_1_a11 ER -
Bernardi, Enrico; Bove, Antonio. On an ODE Relevant for the General Theory of the Hyperbolic Cauchy Problem. Serdica Mathematical Journal, Tome 34 (2008) no. 1, pp. 311-328. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_1_a11/