Some Coefficient Estimates for Polynomials on the Unit Interval
Serdica Mathematical Journal, Tome 33 (2007) no. 4, pp. 449-474
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.
Keywords:
Polynomials, Inequality, Weighted Lp Norm
@article{SMJ2_2007_33_4_a4,
author = {Qazi, M. A. and Rahman, Q. I.},
title = {Some {Coefficient} {Estimates} for {Polynomials} on the {Unit} {Interval}},
journal = {Serdica Mathematical Journal},
pages = {449--474},
year = {2007},
volume = {33},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2007_33_4_a4/}
}
Qazi, M. A.; Rahman, Q. I. Some Coefficient Estimates for Polynomials on the Unit Interval. Serdica Mathematical Journal, Tome 33 (2007) no. 4, pp. 449-474. http://geodesic.mathdoc.fr/item/SMJ2_2007_33_4_a4/