Some Coefficient Estimates for Polynomials on the Unit Interval
Serdica Mathematical Journal, Tome 33 (2007) no. 4, pp. 449-474
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.
Keywords:
Polynomials, Inequality, Weighted Lp Norm
@article{SMJ2_2007_33_4_a4,
author = {Qazi, M. A. and Rahman, Q. I.},
title = {Some {Coefficient} {Estimates} for {Polynomials} on the {Unit} {Interval}},
journal = {Serdica Mathematical Journal},
pages = {449--474},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2007_33_4_a4/}
}
Qazi, M. A.; Rahman, Q. I. Some Coefficient Estimates for Polynomials on the Unit Interval. Serdica Mathematical Journal, Tome 33 (2007) no. 4, pp. 449-474. http://geodesic.mathdoc.fr/item/SMJ2_2007_33_4_a4/