A Note on Div-Curl Lemma
Serdica Mathematical Journal, Tome 33 (2007) no. 2-3, pp. 339-350.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove two results concerning the div-curl lemma without assuming any sort of exact cancellation, namely the divergence and curl need not be zero, and $$div(u^−v^→) ∈ H^1(R^d)$$ which include as a particular case, the result of [3].
Keywords: Compactness Compensated, Hardy Space, Sobolev Space
@article{SMJ2_2007_33_2-3_a6,
     author = {Gala, Sadek},
     title = {A {Note} on {Div-Curl} {Lemma}},
     journal = {Serdica Mathematical Journal},
     pages = {339--350},
     publisher = {mathdoc},
     volume = {33},
     number = {2-3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/}
}
TY  - JOUR
AU  - Gala, Sadek
TI  - A Note on Div-Curl Lemma
JO  - Serdica Mathematical Journal
PY  - 2007
SP  - 339
EP  - 350
VL  - 33
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/
LA  - en
ID  - SMJ2_2007_33_2-3_a6
ER  - 
%0 Journal Article
%A Gala, Sadek
%T A Note on Div-Curl Lemma
%J Serdica Mathematical Journal
%D 2007
%P 339-350
%V 33
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/
%G en
%F SMJ2_2007_33_2-3_a6
Gala, Sadek. A Note on Div-Curl Lemma. Serdica Mathematical Journal, Tome 33 (2007) no. 2-3, pp. 339-350. http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/