A Note on Div-Curl Lemma
Serdica Mathematical Journal, Tome 33 (2007) no. 2-3, pp. 339-350
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We prove two results concerning the div-curl lemma without
assuming any sort of exact cancellation, namely the divergence and curl need not be zero, and $$div(u^−v^→) ∈ H^1(R^d)$$ which include as a particular case, the result of [3].
Keywords:
Compactness Compensated, Hardy Space, Sobolev Space
@article{SMJ2_2007_33_2-3_a6,
author = {Gala, Sadek},
title = {A {Note} on {Div-Curl} {Lemma}},
journal = {Serdica Mathematical Journal},
pages = {339--350},
year = {2007},
volume = {33},
number = {2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/}
}
Gala, Sadek. A Note on Div-Curl Lemma. Serdica Mathematical Journal, Tome 33 (2007) no. 2-3, pp. 339-350. http://geodesic.mathdoc.fr/item/SMJ2_2007_33_2-3_a6/