A New Characterization of Weighted Peetre K-Functionals (II)
Serdica Mathematical Journal, Tome 33 (2007) no. 1, pp. 59-124
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Certain types of weighted Peetre K-functionals are characterized by means
of the classical moduli of smoothness taken on a proper linear
transforms of the function. The weights with power-type asymptotic at the
ends of the interval with arbitrary real exponents are considered. This paper
extends the method and results presented in [3].
Keywords:
K-Functional, Modulus of Smoothness, Linear Operator, Fractional Integral
@article{SMJ2_2007_33_1_a3,
author = {Draganov, Borislav and Ivanov, Kamen},
title = {A {New} {Characterization} of {Weighted} {Peetre} {K-Functionals} {(II)}},
journal = {Serdica Mathematical Journal},
pages = {59--124},
year = {2007},
volume = {33},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2007_33_1_a3/}
}
Draganov, Borislav; Ivanov, Kamen. A New Characterization of Weighted Peetre K-Functionals (II). Serdica Mathematical Journal, Tome 33 (2007) no. 1, pp. 59-124. http://geodesic.mathdoc.fr/item/SMJ2_2007_33_1_a3/