Corrigendum for "Weierstrass Points with first Non-Gap four on a Double Covering of a Hyperelliptic Curve"
Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 375-378.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.
Keywords: Weierstrass Points, Hyperelliptic Curve, Corrigendum
@article{SMJ2_2006_32_4_a5,
     author = {Komeda, Jiryo and Ohbuci, Akira},
     title = {Corrigendum for {"Weierstrass} {Points} with first {Non-Gap} four on a {Double} {Covering} of a {Hyperelliptic} {Curve"}},
     journal = {Serdica Mathematical Journal},
     pages = {375--378},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a5/}
}
TY  - JOUR
AU  - Komeda, Jiryo
AU  - Ohbuci, Akira
TI  - Corrigendum for "Weierstrass Points with first Non-Gap four on a Double Covering of a Hyperelliptic Curve"
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 375
EP  - 378
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a5/
LA  - en
ID  - SMJ2_2006_32_4_a5
ER  - 
%0 Journal Article
%A Komeda, Jiryo
%A Ohbuci, Akira
%T Corrigendum for "Weierstrass Points with first Non-Gap four on a Double Covering of a Hyperelliptic Curve"
%J Serdica Mathematical Journal
%D 2006
%P 375-378
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a5/
%G en
%F SMJ2_2006_32_4_a5
Komeda, Jiryo; Ohbuci, Akira. Corrigendum for "Weierstrass Points with first Non-Gap four on a Double Covering of a Hyperelliptic Curve". Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 375-378. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a5/