Subvarieties of the Hyperelliptic Moduli Determined by Group Actions
Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 355-374 Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library

Voir la notice de l'article

Let Hg be the moduli space of genus g hyperelliptic curves. In this note, we study the locus Hg (G,σ) in Hg of curves admitting a G-action of given ramification type σ and inclusions between such loci. For each genus we determine the list of all possible groups, the inclusions among the loci, and the corresponding equations of the generic curve in Hg (G, σ). The proof of the results is based solely on representations of finite subgroups of PGL2 (C) and the Riemann-Hurwitz formula.
Keywords: Hyperelliptic Curves, Automorphism Groups
@article{SMJ2_2006_32_4_a4,
     author = {Shaska, T.},
     title = {Subvarieties of the {Hyperelliptic} {Moduli} {Determined} by {Group} {Actions}},
     journal = {Serdica Mathematical Journal},
     pages = {355--374},
     year = {2006},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a4/}
}
TY  - JOUR
AU  - Shaska, T.
TI  - Subvarieties of the Hyperelliptic Moduli Determined by Group Actions
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 355
EP  - 374
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a4/
LA  - en
ID  - SMJ2_2006_32_4_a4
ER  - 
%0 Journal Article
%A Shaska, T.
%T Subvarieties of the Hyperelliptic Moduli Determined by Group Actions
%J Serdica Mathematical Journal
%D 2006
%P 355-374
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a4/
%G en
%F SMJ2_2006_32_4_a4
Shaska, T. Subvarieties of the Hyperelliptic Moduli Determined by Group Actions. Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 355-374. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a4/