A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals
Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 303-322.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The purpose of this paper is to present a characterization of a certain Peetre K-functional in Lp[−1,1] norm, for 1 ≤ p ≤ 2 by means of a modulus of smoothness. This modulus is based on the classical one taken on a certain linear transform of the function.
Keywords: K-Functional, Modulus of Smoothness, Jackson Integral
@article{SMJ2_2006_32_4_a2,
     author = {Zapryanova, T.},
     title = {A {Characterization} {Theorem} for the {K-functional} {Associated} with the {Algebraic} {Version} of {Trigonometric} {Jackson} {Integrals}},
     journal = {Serdica Mathematical Journal},
     pages = {303--322},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/}
}
TY  - JOUR
AU  - Zapryanova, T.
TI  - A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 303
EP  - 322
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/
LA  - en
ID  - SMJ2_2006_32_4_a2
ER  - 
%0 Journal Article
%A Zapryanova, T.
%T A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals
%J Serdica Mathematical Journal
%D 2006
%P 303-322
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/
%G en
%F SMJ2_2006_32_4_a2
Zapryanova, T. A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals. Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 303-322. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/