A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals
Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 303-322
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The purpose of this paper is to present a characterization of a certain Peetre K-functional in Lp[−1,1] norm, for 1 ≤ p ≤ 2 by means of a modulus of smoothness. This modulus is based on the classical one taken on a certain linear transform of the function.
Keywords:
K-Functional, Modulus of Smoothness, Jackson Integral
@article{SMJ2_2006_32_4_a2,
author = {Zapryanova, T.},
title = {A {Characterization} {Theorem} for the {K-functional} {Associated} with the {Algebraic} {Version} of {Trigonometric} {Jackson} {Integrals}},
journal = {Serdica Mathematical Journal},
pages = {303--322},
year = {2006},
volume = {32},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/}
}
TY - JOUR AU - Zapryanova, T. TI - A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals JO - Serdica Mathematical Journal PY - 2006 SP - 303 EP - 322 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/ LA - en ID - SMJ2_2006_32_4_a2 ER -
%0 Journal Article %A Zapryanova, T. %T A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals %J Serdica Mathematical Journal %D 2006 %P 303-322 %V 32 %N 4 %U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/ %G en %F SMJ2_2006_32_4_a2
Zapryanova, T. A Characterization Theorem for the K-functional Associated with the Algebraic Version of Trigonometric Jackson Integrals. Serdica Mathematical Journal, Tome 32 (2006) no. 4, pp. 303-322. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_4_a2/