Kadec Norms on Spaces of Continuous Functions
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 227-258
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We study the existence of pointwise Kadec renormings for Banach spaces of the form C(K). We show in particular that such a renorming exists when K is any product of compact linearly ordered spaces, extending the result for a single factor due to Haydon, Jayne, Namioka and Rogers. We show that if C(K1) has a pointwise Kadec renorming and K2 belongs to the class of spaces obtained by closing the class of compact metrizable spaces under inverse limits of transfinite continuous sequences of retractions, then C(K1×K2) has a pointwise Kadec renorming. We also prove a version of the three-space property for such renormings.
Keywords:
tp-Kadec Norm, Banach Space of Continuous Functions, Compact Space
@article{SMJ2_2006_32_2-3_a6,
author = {Burke, Maxim R. and Wiesaw, Kubis and Stevo, Todorcevic},
title = {Kadec {Norms} on {Spaces} of {Continuous} {Functions}},
journal = {Serdica Mathematical Journal},
pages = {227--258},
year = {2006},
volume = {32},
number = {2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a6/}
}
Burke, Maxim R.; Wiesaw, Kubis; Stevo, Todorcevic. Kadec Norms on Spaces of Continuous Functions. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 227-258. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a6/