Moduli stacks of polarized K3 surfaces in mixed characteristic
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 131-178.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this note we define moduli stacks of (primitively) polarized K3 spaces. We show that they are representable by Deligne-Mumford stacks over Spec(Z). Further, we look at K3 spaces with a level structure. Our main result is that the moduli functors of K3 spaces with a primitive polarization of degree 2d and a level structure are representable by smooth algebraic spaces over open parts of Spec(Z). To do this we use ideas of Grothendieck, Deligne, Mumford, Artin and others. These results are the starting point for the theory of complex multiplication for K3 surfaces and the definition of Kuga-Satake abelian varieties in positive characteristic given in our Ph.D. [J. Rizov. Moduli of K3 Surfaces and Abelian Variaties. Ph. D. thesis, University of Utrecht, 2005]. thesis.
Keywords: K3 Surfaces, Moduli Spaces
@article{SMJ2_2006_32_2-3_a1,
     author = {Rizov, Jordan},
     title = {Moduli stacks of polarized {K3} surfaces in mixed characteristic},
     journal = {Serdica Mathematical Journal},
     pages = {131--178},
     publisher = {mathdoc},
     volume = {32},
     number = {2-3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a1/}
}
TY  - JOUR
AU  - Rizov, Jordan
TI  - Moduli stacks of polarized K3 surfaces in mixed characteristic
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 131
EP  - 178
VL  - 32
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a1/
LA  - en
ID  - SMJ2_2006_32_2-3_a1
ER  - 
%0 Journal Article
%A Rizov, Jordan
%T Moduli stacks of polarized K3 surfaces in mixed characteristic
%J Serdica Mathematical Journal
%D 2006
%P 131-178
%V 32
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a1/
%G en
%F SMJ2_2006_32_2-3_a1
Rizov, Jordan. Moduli stacks of polarized K3 surfaces in mixed characteristic. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 131-178. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a1/