Little G. T. for lp-lattice summing operators
Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 39-56.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we introduce and study the lp-lattice summing operators in the category of operator spaces which are the analogous of p-lattice summing operators in the commutative case. We study some interesting characterizations of this type of operators which generalize the results of Nielsen and Szulga and we show that Λ l∞( B(H) ,OH) ≠ Λ l2( B( H) ,OH), in opposition to the commutative case.
Keywords: Banach Lattice, Completely Bounded Operator, Convex Operator, lp-lattice Summing Operato, Operator Space
@article{SMJ2_2006_32_1_a3,
     author = {Mezrag, Lahc\`ene},
     title = {Little {G.} {T.} for lp-lattice summing operators},
     journal = {Serdica Mathematical Journal},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/}
}
TY  - JOUR
AU  - Mezrag, Lahcène
TI  - Little G. T. for lp-lattice summing operators
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 39
EP  - 56
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/
LA  - en
ID  - SMJ2_2006_32_1_a3
ER  - 
%0 Journal Article
%A Mezrag, Lahcène
%T Little G. T. for lp-lattice summing operators
%J Serdica Mathematical Journal
%D 2006
%P 39-56
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/
%G en
%F SMJ2_2006_32_1_a3
Mezrag, Lahcène. Little G. T. for lp-lattice summing operators. Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/