Little G. T. for lp-lattice summing operators
Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 39-56
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we introduce and study the lp-lattice summing operators in the category of operator spaces which are the analogous of p-lattice summing operators in the commutative case. We study some interesting characterizations of this type of operators which generalize the results of Nielsen and Szulga and we show that Λ l∞( B(H) ,OH) ≠ Λ l2( B( H) ,OH), in opposition to the commutative case.
Keywords:
Banach Lattice, Completely Bounded Operator, Convex Operator, lp-lattice Summing Operato, Operator Space
@article{SMJ2_2006_32_1_a3,
author = {Mezrag, Lahc\`ene},
title = {Little {G.} {T.} for lp-lattice summing operators},
journal = {Serdica Mathematical Journal},
pages = {39--56},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/}
}
Mezrag, Lahcène. Little G. T. for lp-lattice summing operators. Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a3/