On the Range and the Kernel of Derivations
Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let H be a separable infinite dimensional complex Hilbert space and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A ∈ L(H), the derivation δA : L(H)→ L(H) is defined by δA(X) = AX-XA. In this paper we prove that if A is an n-multicyclic hyponormal operator and T is hyponormal such that AT = TA, then || δA(X)+T|| ≥ ||T|| for all X ∈ L(H). We establish the same inequality if A is a finite operator and commutes with normal operator T. Some related results are also given.
Keywords: Finite Operator, n-multicyclic hyponormal operator
@article{SMJ2_2006_32_1_a2,
     author = {Bouali, Said and Bouhafsi, Youssef},
     title = {On the {Range} and the {Kernel} of {Derivations}},
     journal = {Serdica Mathematical Journal},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a2/}
}
TY  - JOUR
AU  - Bouali, Said
AU  - Bouhafsi, Youssef
TI  - On the Range and the Kernel of Derivations
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 31
EP  - 38
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a2/
LA  - en
ID  - SMJ2_2006_32_1_a2
ER  - 
%0 Journal Article
%A Bouali, Said
%A Bouhafsi, Youssef
%T On the Range and the Kernel of Derivations
%J Serdica Mathematical Journal
%D 2006
%P 31-38
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a2/
%G en
%F SMJ2_2006_32_1_a2
Bouali, Said; Bouhafsi, Youssef. On the Range and the Kernel of Derivations. Serdica Mathematical Journal, Tome 32 (2006) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_1_a2/