A Geometrical Construction for the Polynomial Invariants of some Reflection Groups
Serdica Mathematical Journal, Tome 31 (2005) no. 3, pp. 229-242
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We construct invariant polynomials for the reflection groups
[3, 4, 3] and [3, 3, 5] by using some special sets of lines on the quadric P1 × P1
in P3. Then we give a simple proof of the well known fact that the ring of
invariants are rationally generated in degree 2,6,8,12 and 2,12,20,30.
Keywords:
Polynomial Invariants, Reflection and Coxeter Groups, Group Actions on Varieties
@article{SMJ2_2005_31_3_a4,
author = {Sarti, Alessandra},
title = {A {Geometrical} {Construction} for the {Polynomial} {Invariants} of some {Reflection} {Groups}},
journal = {Serdica Mathematical Journal},
pages = {229--242},
year = {2005},
volume = {31},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a4/}
}
Sarti, Alessandra. A Geometrical Construction for the Polynomial Invariants of some Reflection Groups. Serdica Mathematical Journal, Tome 31 (2005) no. 3, pp. 229-242. http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a4/