On Root Arrangements of Polynomial-Like Functions and their Derivatives
Serdica Mathematical Journal, Tome 31 (2005) no. 3, pp. 201-216.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We show that for n = 4 they are realizable either by hyperbolic polynomials of degree 4 or by non-hyperbolic polynomials of degree 6 whose fourth derivatives never vanish (these are a particular case of the so-called hyperbolic polynomial-like functions of degree 4).
Keywords: Hyperbolic Polynomial, Root Arrangement, Configuration Vector
@article{SMJ2_2005_31_3_a2,
     author = {Kostov, Vladimir},
     title = {On {Root} {Arrangements} of {Polynomial-Like} {Functions} and their {Derivatives}},
     journal = {Serdica Mathematical Journal},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a2/}
}
TY  - JOUR
AU  - Kostov, Vladimir
TI  - On Root Arrangements of Polynomial-Like Functions and their Derivatives
JO  - Serdica Mathematical Journal
PY  - 2005
SP  - 201
EP  - 216
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a2/
LA  - en
ID  - SMJ2_2005_31_3_a2
ER  - 
%0 Journal Article
%A Kostov, Vladimir
%T On Root Arrangements of Polynomial-Like Functions and their Derivatives
%J Serdica Mathematical Journal
%D 2005
%P 201-216
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a2/
%G en
%F SMJ2_2005_31_3_a2
Kostov, Vladimir. On Root Arrangements of Polynomial-Like Functions and their Derivatives. Serdica Mathematical Journal, Tome 31 (2005) no. 3, pp. 201-216. http://geodesic.mathdoc.fr/item/SMJ2_2005_31_3_a2/