Direct and Inverse Spectral Problems for (2N + 1)-Diagonal, Complex, Symmetric, Non-Hermitian Matrices
Serdica Mathematical Journal, Tome 30 (2004) no. 4, pp. 471-482
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We give an easy procedure for solving of the direct and the inverse spectral problems
for the equation. Guseynov used a procedure of the Gelfand-Levitan type
for the case N = 1. We use another procedure and this procedure is more
easy and transparent.
Keywords:
Inverse Problems, Difference Equation
@article{SMJ2_2004_30_4_a0,
author = {Zagorodnyuk, S.},
title = {Direct and {Inverse} {Spectral} {Problems} for {(2N} + {1)-Diagonal,} {Complex,} {Symmetric,} {Non-Hermitian} {Matrices}},
journal = {Serdica Mathematical Journal},
pages = {471--482},
year = {2004},
volume = {30},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_4_a0/}
}
TY - JOUR AU - Zagorodnyuk, S. TI - Direct and Inverse Spectral Problems for (2N + 1)-Diagonal, Complex, Symmetric, Non-Hermitian Matrices JO - Serdica Mathematical Journal PY - 2004 SP - 471 EP - 482 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_4_a0/ LA - en ID - SMJ2_2004_30_4_a0 ER -
Zagorodnyuk, S. Direct and Inverse Spectral Problems for (2N + 1)-Diagonal, Complex, Symmetric, Non-Hermitian Matrices. Serdica Mathematical Journal, Tome 30 (2004) no. 4, pp. 471-482. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_4_a0/