Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1)
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 293-302
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this note we attempt to generalize a few statements drawn from the 3-dimensional McKay correspondence to the case of a cyclic group
not in SL(3, C). We construct a smooth, discrepant resolution of the cyclic, terminal quotient singularity of type 1/r(1,1,r−1), which turns out to be isomorphic to Nakamura’s G-Hilbert scheme. Moreover we explicitly describe tautological bundles and use them to construct a dual basis to the integral cohomology on the resolution.
Keywords:
McKay Correspondence, Resolutions of Terminal Quotient Singularities, G-Hilbert Scheme
@article{SMJ2_2004_30_2-3_a9,
author = {K\k{e}dzierski, Oskar},
title = {Cohomology of the {G-Hilbert} {Scheme} for {1/r(1,1,R\ensuremath{-}1)}},
journal = {Serdica Mathematical Journal},
pages = {293--302},
year = {2004},
volume = {30},
number = {2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/}
}
Kędzierski, Oskar. Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1). Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 293-302. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/