Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1)
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 293-302.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this note we attempt to generalize a few statements drawn from the 3-dimensional McKay correspondence to the case of a cyclic group not in SL(3, C). We construct a smooth, discrepant resolution of the cyclic, terminal quotient singularity of type 1/r(1,1,r−1), which turns out to be isomorphic to Nakamura’s G-Hilbert scheme. Moreover we explicitly describe tautological bundles and use them to construct a dual basis to the integral cohomology on the resolution.
Keywords: McKay Correspondence, Resolutions of Terminal Quotient Singularities, G-Hilbert Scheme
@article{SMJ2_2004_30_2-3_a9,
     author = {K\k{e}dzierski, Oskar},
     title = {Cohomology of the {G-Hilbert} {Scheme} for {1/r(1,1,R\ensuremath{-}1)}},
     journal = {Serdica Mathematical Journal},
     pages = {293--302},
     publisher = {mathdoc},
     volume = {30},
     number = {2-3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/}
}
TY  - JOUR
AU  - Kędzierski, Oskar
TI  - Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1)
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 293
EP  - 302
VL  - 30
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/
LA  - en
ID  - SMJ2_2004_30_2-3_a9
ER  - 
%0 Journal Article
%A Kędzierski, Oskar
%T Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1)
%J Serdica Mathematical Journal
%D 2004
%P 293-302
%V 30
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/
%G en
%F SMJ2_2004_30_2-3_a9
Kędzierski, Oskar. Cohomology of the G-Hilbert Scheme for 1/r(1,1,R−1). Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 293-302. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a9/