Dickson Polynomials that are Permutations
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 177-194.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A theorem of S.D. Cohen gives a characterization for Dickson polynomials of the second kind that permutes the elements of a finite field of cardinality the square of the characteristic. Here, a different proof is presented for this result.
Keywords: Dickson Polynomial, Gröbner Basis, Permutation Polynomial
@article{SMJ2_2004_30_2-3_a4,
     author = {Cipu, Mihai},
     title = {Dickson {Polynomials} that are {Permutations}},
     journal = {Serdica Mathematical Journal},
     pages = {177--194},
     publisher = {mathdoc},
     volume = {30},
     number = {2-3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a4/}
}
TY  - JOUR
AU  - Cipu, Mihai
TI  - Dickson Polynomials that are Permutations
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 177
EP  - 194
VL  - 30
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a4/
LA  - en
ID  - SMJ2_2004_30_2-3_a4
ER  - 
%0 Journal Article
%A Cipu, Mihai
%T Dickson Polynomials that are Permutations
%J Serdica Mathematical Journal
%D 2004
%P 177-194
%V 30
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a4/
%G en
%F SMJ2_2004_30_2-3_a4
Cipu, Mihai. Dickson Polynomials that are Permutations. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 177-194. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a4/