Remarks on the Nagata Conjecture
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 405-430.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We use this restriction in order to obtain lower bounds on multiple point Seshadri constants on a surface. We discuss also briefly a seemingly new point of view on the Nagata Conjecture via the bigness of the involved linear series.
Keywords: Nagata Conjecture, Linear Series, Seshadri Constants, Harbourne-Hirschowitz Conjecture, Big Divisors
@article{SMJ2_2004_30_2-3_a15,
     author = {Strycharz-Szemberg, Beata and Szemberg, Tomasz},
     title = {Remarks on the {Nagata} {Conjecture}},
     journal = {Serdica Mathematical Journal},
     pages = {405--430},
     publisher = {mathdoc},
     volume = {30},
     number = {2-3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a15/}
}
TY  - JOUR
AU  - Strycharz-Szemberg, Beata
AU  - Szemberg, Tomasz
TI  - Remarks on the Nagata Conjecture
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 405
EP  - 430
VL  - 30
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a15/
LA  - en
ID  - SMJ2_2004_30_2-3_a15
ER  - 
%0 Journal Article
%A Strycharz-Szemberg, Beata
%A Szemberg, Tomasz
%T Remarks on the Nagata Conjecture
%J Serdica Mathematical Journal
%D 2004
%P 405-430
%V 30
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a15/
%G en
%F SMJ2_2004_30_2-3_a15
Strycharz-Szemberg, Beata; Szemberg, Tomasz. Remarks on the Nagata Conjecture. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 405-430. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a15/