Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 395-404.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.
Keywords: Noncommutative Invariant Theory, Unipotent Transformations, Relatively Free Algebras
@article{SMJ2_2004_30_2-3_a14,
     author = {Drensky, Vesselin},
     title = {Invariants of {Unipotent} {Transformations} {Acting} on {Noetherian} {Relatively} {Free} {Algebras}},
     journal = {Serdica Mathematical Journal},
     pages = {395--404},
     publisher = {mathdoc},
     volume = {30},
     number = {2-3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/}
}
TY  - JOUR
AU  - Drensky, Vesselin
TI  - Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 395
EP  - 404
VL  - 30
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/
LA  - en
ID  - SMJ2_2004_30_2-3_a14
ER  - 
%0 Journal Article
%A Drensky, Vesselin
%T Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras
%J Serdica Mathematical Journal
%D 2004
%P 395-404
%V 30
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/
%G en
%F SMJ2_2004_30_2-3_a14
Drensky, Vesselin. Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 395-404. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/