Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 395-404
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.
Keywords:
Noncommutative Invariant Theory, Unipotent Transformations, Relatively Free Algebras
@article{SMJ2_2004_30_2-3_a14,
author = {Drensky, Vesselin},
title = {Invariants of {Unipotent} {Transformations} {Acting} on {Noetherian} {Relatively} {Free} {Algebras}},
journal = {Serdica Mathematical Journal},
pages = {395--404},
publisher = {mathdoc},
volume = {30},
number = {2-3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/}
}
TY - JOUR AU - Drensky, Vesselin TI - Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras JO - Serdica Mathematical Journal PY - 2004 SP - 395 EP - 404 VL - 30 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/ LA - en ID - SMJ2_2004_30_2-3_a14 ER -
Drensky, Vesselin. Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 395-404. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a14/