Henselian Discrete Valued Fields Admitting One-Dimensional Local Class Field Theory
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 363-394
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
This paper gives a characterization of Henselian discrete valued
fields whose finite abelian extensions are uniquely determined by their norm
groups and related essentially in the same way as in the classical local class
field theory. It determines the structure of the Brauer groups and character
groups of Henselian discrete valued strictly primary quasilocal (or PQL-) fields, and thereby, describes the forms of the local reciprocity law for such fields. It shows that, in contrast to the special cases of local fields
or strictly PQL-fields algebraic over a given global field, the norm groups
of finite separable extensions of the considered fields are not necessarily
equal to norm groups of finite Galois extensions with Galois groups of easily
accessible structure.
Keywords:
Field Admitting (one-dimensional) Local Class Field Theory, Strictly Primarily Quasilocal Field, Henselian Valued Field, Brauer Group, Character Group, Norm Group, Galois Extension, Regular Group Formation
@article{SMJ2_2004_30_2-3_a13,
author = {Chipchakov, I.},
title = {Henselian {Discrete} {Valued} {Fields} {Admitting} {One-Dimensional} {Local} {Class} {Field} {Theory}},
journal = {Serdica Mathematical Journal},
pages = {363--394},
publisher = {mathdoc},
volume = {30},
number = {2-3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a13/}
}
TY - JOUR AU - Chipchakov, I. TI - Henselian Discrete Valued Fields Admitting One-Dimensional Local Class Field Theory JO - Serdica Mathematical Journal PY - 2004 SP - 363 EP - 394 VL - 30 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a13/ LA - en ID - SMJ2_2004_30_2-3_a13 ER -
Chipchakov, I. Henselian Discrete Valued Fields Admitting One-Dimensional Local Class Field Theory. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 363-394. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a13/