Sequences of Maximal Degree Vertices in Graphs
Serdica Mathematical Journal, Tome 30 (2004) no. 1, pp. 95-102.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let Γ(M ) where M ⊂ V (G) be the set of all vertices of the graph G adjacent to any vertex of M. If v1, . . . , vr is a vertex sequence in G such that Γ(v1, . . . , vr ) = ∅ and vi is a maximal degree vertex in Γ(v1, . . . , vi−1), we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr ) is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) Γ(vi )|.
Keywords: Maximal Degree Vertex, Complete S-partite Graph, Turan’s Graph
@article{SMJ2_2004_30_1_a7,
     author = {Khadzhiivanov, Nickolay and Nenov, Nedyalko},
     title = {Sequences of {Maximal} {Degree} {Vertices} in {Graphs}},
     journal = {Serdica Mathematical Journal},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_1_a7/}
}
TY  - JOUR
AU  - Khadzhiivanov, Nickolay
AU  - Nenov, Nedyalko
TI  - Sequences of Maximal Degree Vertices in Graphs
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 95
EP  - 102
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_1_a7/
LA  - en
ID  - SMJ2_2004_30_1_a7
ER  - 
%0 Journal Article
%A Khadzhiivanov, Nickolay
%A Nenov, Nedyalko
%T Sequences of Maximal Degree Vertices in Graphs
%J Serdica Mathematical Journal
%D 2004
%P 95-102
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_1_a7/
%G en
%F SMJ2_2004_30_1_a7
Khadzhiivanov, Nickolay; Nenov, Nedyalko. Sequences of Maximal Degree Vertices in Graphs. Serdica Mathematical Journal, Tome 30 (2004) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_1_a7/