Upper and Lower Bounds in Relator Spaces
Serdica Mathematical Journal, Tome 29 (2003) no. 3, pp. 239-270.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

An ordered pair X(R) = ( X, R ) consisting of a nonvoid set X and a nonvoid family R of binary relations on X is called a relator space. Relator spaces are straightforward generalizations not only of uniform spaces, but also of ordered sets. Therefore, in a relator space we can naturally define not only some topological notions, but also some order theoretic ones. It turns out that these two, apparently quite different, types of notions are closely related to each other through complementations.
Keywords: Relational Systems, Interiors and Closures, Upper and Lower Bounds, Maxima and Minima
@article{SMJ2_2003_29_3_a2,
     author = {Sz\'az, \'Arp\'ad},
     title = {Upper and {Lower} {Bounds} in {Relator} {Spaces}},
     journal = {Serdica Mathematical Journal},
     pages = {239--270},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a2/}
}
TY  - JOUR
AU  - Száz, Árpád
TI  - Upper and Lower Bounds in Relator Spaces
JO  - Serdica Mathematical Journal
PY  - 2003
SP  - 239
EP  - 270
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a2/
LA  - en
ID  - SMJ2_2003_29_3_a2
ER  - 
%0 Journal Article
%A Száz, Árpád
%T Upper and Lower Bounds in Relator Spaces
%J Serdica Mathematical Journal
%D 2003
%P 239-270
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a2/
%G en
%F SMJ2_2003_29_3_a2
Száz, Árpád. Upper and Lower Bounds in Relator Spaces. Serdica Mathematical Journal, Tome 29 (2003) no. 3, pp. 239-270. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a2/