Sufficient Second Order Optimality Conditions for C^1 Multiobjective Optimization Problems
Serdica Mathematical Journal, Tome 29 (2003) no. 3, pp. 225-238
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this work, we use the notion of Approximate Hessian introduced by Jeyakumar and Luc [19], and a special scalarization to establish
sufficient optimality conditions for constrained multiobjective optimization problems. Throughout this paper, the data are assumed to be of class C^1, but not necessarily of class C^(1.1).
Keywords:
Approximate Hessian Matrix, Recession Matrices, Sufficient Second Order Optimality Conditions, Support Functions, Multiobjective Optimization
@article{SMJ2_2003_29_3_a1,
author = {Gadhi, N.},
title = {Sufficient {Second} {Order} {Optimality} {Conditions} for {C^1} {Multiobjective} {Optimization} {Problems}},
journal = {Serdica Mathematical Journal},
pages = {225--238},
year = {2003},
volume = {29},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a1/}
}
Gadhi, N. Sufficient Second Order Optimality Conditions for C^1 Multiobjective Optimization Problems. Serdica Mathematical Journal, Tome 29 (2003) no. 3, pp. 225-238. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_3_a1/