Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions
Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 45-54.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we investigate the existence of a sequence (xk ) satisfying 0 ∈ f (xk )+ ∇f (xk )(xk+1 − xk )+ 1/2 ∇2 f (xk )(xk+1 − xk )^2 + G(xk+1 ) and converging to a solution x∗ of the generalized equation 0 ∈ f (x) + G(x); where f is a function and G is a set-valued map acting in Banach spaces.
Keywords: Multiapplication, Aubin Continuity, Cubic Convergence
@article{SMJ2_2003_29_1_a3,
     author = {Geoffroy, M. and Hilout, S. and Pietrus, A.},
     title = {Acceleration of {Convergence} in {Dontchev{\textquoteright}s} {Iterative} {Method} for {Solving} {Variational} {Inclusions}},
     journal = {Serdica Mathematical Journal},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/}
}
TY  - JOUR
AU  - Geoffroy, M.
AU  - Hilout, S.
AU  - Pietrus, A.
TI  - Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions
JO  - Serdica Mathematical Journal
PY  - 2003
SP  - 45
EP  - 54
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/
LA  - en
ID  - SMJ2_2003_29_1_a3
ER  - 
%0 Journal Article
%A Geoffroy, M.
%A Hilout, S.
%A Pietrus, A.
%T Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions
%J Serdica Mathematical Journal
%D 2003
%P 45-54
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/
%G en
%F SMJ2_2003_29_1_a3
Geoffroy, M.; Hilout, S.; Pietrus, A. Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions. Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/