Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions
Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 45-54
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we investigate the existence of a sequence (xk )
satisfying 0 ∈ f (xk )+ ∇f (xk )(xk+1 − xk )+ 1/2 ∇2 f (xk )(xk+1 − xk )^2 + G(xk+1 ) and converging to a solution x∗ of the generalized equation 0 ∈ f (x) + G(x); where f is a function and G is a set-valued map acting in Banach spaces.
Keywords:
Multiapplication, Aubin Continuity, Cubic Convergence
@article{SMJ2_2003_29_1_a3,
author = {Geoffroy, M. and Hilout, S. and Pietrus, A.},
title = {Acceleration of {Convergence} in {Dontchev{\textquoteright}s} {Iterative} {Method} for {Solving} {Variational} {Inclusions}},
journal = {Serdica Mathematical Journal},
pages = {45--54},
year = {2003},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/}
}
TY - JOUR AU - Geoffroy, M. AU - Hilout, S. AU - Pietrus, A. TI - Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions JO - Serdica Mathematical Journal PY - 2003 SP - 45 EP - 54 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/ LA - en ID - SMJ2_2003_29_1_a3 ER -
%0 Journal Article %A Geoffroy, M. %A Hilout, S. %A Pietrus, A. %T Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions %J Serdica Mathematical Journal %D 2003 %P 45-54 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/ %G en %F SMJ2_2003_29_1_a3
Geoffroy, M.; Hilout, S.; Pietrus, A. Acceleration of Convergence in Dontchev’s Iterative Method for Solving Variational Inclusions. Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a3/