A PVT-Type Algorithm for Minimizing a Nonsmooth Convex Function
Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 11-32.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A general framework of the (parallel variable transformation) PVT-type algorithm, called the PVT-MYR algorithm, for minimizing a non-smooth convex function is proposed, via the Moreau-Yosida regularization. As a particular scheme of this framework an ε-scheme is also presented. The global convergence of this algorithm is given under the assumptions of strong convexity of the objective function and an ε-descent condition determined by an ε-forced function. An appendix stating the proximal point algorithm is recalled in the last section.
Keywords: Parallel Algorithm, Synchronous Parallel, Convex Minimization, Moreau-Yosida Regularization, Strong Convexity, Descent Condition, Forced Function
@article{SMJ2_2003_29_1_a1,
     author = {Pang, Li-Ping and Xia, Zun-Quan},
     title = {A {PVT-Type} {Algorithm} for {Minimizing} a {Nonsmooth} {Convex} {Function}},
     journal = {Serdica Mathematical Journal},
     pages = {11--32},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a1/}
}
TY  - JOUR
AU  - Pang, Li-Ping
AU  - Xia, Zun-Quan
TI  - A PVT-Type Algorithm for Minimizing a Nonsmooth Convex Function
JO  - Serdica Mathematical Journal
PY  - 2003
SP  - 11
EP  - 32
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a1/
LA  - en
ID  - SMJ2_2003_29_1_a1
ER  - 
%0 Journal Article
%A Pang, Li-Ping
%A Xia, Zun-Quan
%T A PVT-Type Algorithm for Minimizing a Nonsmooth Convex Function
%J Serdica Mathematical Journal
%D 2003
%P 11-32
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a1/
%G en
%F SMJ2_2003_29_1_a1
Pang, Li-Ping; Xia, Zun-Quan. A PVT-Type Algorithm for Minimizing a Nonsmooth Convex Function. Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 11-32. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a1/