On Representations of Algebraic Polynomials by Superpositions of Plane Waves
Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 379-390
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let P be a bi-variate algebraic polynomial of degree n with the
real senior part, and Y = {yj }1,n an n-element collection of pairwise
noncolinear unit vectors on the real plane. It is proved that there exists a rigid
rotation Y^φ of Y by an angle φ = φ(P, Y ) ∈ [0, π/n] such that P equals the
sum of n plane wave polynomials, that propagate in the directions ∈ Y^φ .
Keywords:
Non-Linear Approximation, Polynomials, Plane Waves, Ridge Functions, Chebyshev-Fourier Analysis
@article{SMJ2_2002_28_4_a7,
author = {Oskolkov, K.},
title = {On {Representations} of {Algebraic} {Polynomials} by {Superpositions} of {Plane} {Waves}},
journal = {Serdica Mathematical Journal},
pages = {379--390},
year = {2002},
volume = {28},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/}
}
Oskolkov, K. On Representations of Algebraic Polynomials by Superpositions of Plane Waves. Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 379-390. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/