On Representations of Algebraic Polynomials by Superpositions of Plane Waves
Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 379-390.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let P be a bi-variate algebraic polynomial of degree n with the real senior part, and Y = {yj }1,n an n-element collection of pairwise noncolinear unit vectors on the real plane. It is proved that there exists a rigid rotation Y^φ of Y by an angle φ = φ(P, Y ) ∈ [0, π/n] such that P equals the sum of n plane wave polynomials, that propagate in the directions ∈ Y^φ .
Keywords: Non-Linear Approximation, Polynomials, Plane Waves, Ridge Functions, Chebyshev-Fourier Analysis
@article{SMJ2_2002_28_4_a7,
     author = {Oskolkov, K.},
     title = {On {Representations} of {Algebraic} {Polynomials} by {Superpositions} of {Plane} {Waves}},
     journal = {Serdica Mathematical Journal},
     pages = {379--390},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/}
}
TY  - JOUR
AU  - Oskolkov, K.
TI  - On Representations of Algebraic Polynomials by Superpositions of Plane Waves
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 379
EP  - 390
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/
LA  - en
ID  - SMJ2_2002_28_4_a7
ER  - 
%0 Journal Article
%A Oskolkov, K.
%T On Representations of Algebraic Polynomials by Superpositions of Plane Waves
%J Serdica Mathematical Journal
%D 2002
%P 379-390
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/
%G en
%F SMJ2_2002_28_4_a7
Oskolkov, K. On Representations of Algebraic Polynomials by Superpositions of Plane Waves. Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 379-390. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a7/