The Automorphism Group of the Free Algebra of Rank Two
Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 255-266.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Keywords: Free Algebra, Free Product with Amalgamation, Affine Automorphism, Linear Automorphism, Bipolar Structure
@article{SMJ2_2002_28_3_a6,
     author = {Cohn, P.},
     title = {The {Automorphism} {Group} of the {Free} {Algebra} of {Rank} {Two}},
     journal = {Serdica Mathematical Journal},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a6/}
}
TY  - JOUR
AU  - Cohn, P.
TI  - The Automorphism Group of the Free Algebra of Rank Two
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 255
EP  - 266
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a6/
LA  - en
ID  - SMJ2_2002_28_3_a6
ER  - 
%0 Journal Article
%A Cohn, P.
%T The Automorphism Group of the Free Algebra of Rank Two
%J Serdica Mathematical Journal
%D 2002
%P 255-266
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a6/
%G en
%F SMJ2_2002_28_3_a6
Cohn, P. The Automorphism Group of the Free Algebra of Rank Two. Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 255-266. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a6/