Caractérisation Des Espaces 1-Matriciellement Normés
Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 201-206
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let X be a closed subspace of B(H) for some Hilbert space
H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] =
(S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X)
and showed that there are p−matricially normed spaces. In this paper we
prove that conversely, if X is a p−matricially normed space with p = 1,
then there is an operator structure on X, such that M1,n (X) = S1 [X] where
Sn,1 [X] is the finite dimentional version of S1 [X]. For p = 1, we have no
answer.
Mots-clés :
Espace d’opérateurs, Espace P-Matriciellement Normé, Opérateur Complétement Borné
@article{SMJ2_2002_28_3_a1,
author = {Le Merdy, Christian and Mezrag, Lahc\'ene},
title = {Caract\'erisation {Des} {Espaces} {1-Matriciellement} {Norm\'es}},
journal = {Serdica Mathematical Journal},
pages = {201--206},
year = {2002},
volume = {28},
number = {3},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/}
}
Le Merdy, Christian; Mezrag, Lahcéne. Caractérisation Des Espaces 1-Matriciellement Normés. Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 201-206. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/