Caractérisation Des Espaces 1-Matriciellement Normés
Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 201-206.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p = 1, we have no answer.
Mots-clés : Espace d’opérateurs, Espace P-Matriciellement Normé, Opérateur Complétement Borné
@article{SMJ2_2002_28_3_a1,
     author = {Le Merdy, Christian and Mezrag, Lahc\'ene},
     title = {Caract\'erisation {Des} {Espaces} {1-Matriciellement} {Norm\'es}},
     journal = {Serdica Mathematical Journal},
     pages = {201--206},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2002},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/}
}
TY  - JOUR
AU  - Le Merdy, Christian
AU  - Mezrag, Lahcéne
TI  - Caractérisation Des Espaces 1-Matriciellement Normés
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 201
EP  - 206
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/
LA  - fr
ID  - SMJ2_2002_28_3_a1
ER  - 
%0 Journal Article
%A Le Merdy, Christian
%A Mezrag, Lahcéne
%T Caractérisation Des Espaces 1-Matriciellement Normés
%J Serdica Mathematical Journal
%D 2002
%P 201-206
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/
%G fr
%F SMJ2_2002_28_3_a1
Le Merdy, Christian; Mezrag, Lahcéne. Caractérisation Des Espaces 1-Matriciellement Normés. Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 201-206. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a1/