Discriminant Sets of Families of Hyperbolic Polynomials of Degree 4 and 5
Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 117-152.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A real polynomial of one real variable is hyperbolic (resp. strictly hyperbolic) if it has only real roots (resp. if its roots are real and distinct). We prove that there are 116 possible non-degenerate configurations between the roots of a degree 5 strictly hyperbolic polynomial and of its derivatives (i.e. configurations without equalities between roots). The standard Rolle theorem allows 286 such configurations. To obtain the result we study the hyperbolicity domain of the family P (x; a, b, c) = x^5 − x^3 + ax^2 + bx + c (i.e. the set of values of a, b, c ∈ R for which the polynomial is hyperbolic) and its stratification defined by the discriminant sets Res(P^(i) , P^(j) ) = 0, 0 ≤ i j ≤ 4.
Keywords: Hyperbolic Polynomial, Hyperbolicity Domain, Overdetermined Stratum
@article{SMJ2_2002_28_2_a2,
     author = {Kostov, Vladimir},
     title = {Discriminant {Sets} of {Families} of {Hyperbolic} {Polynomials} of {Degree} 4 and 5},
     journal = {Serdica Mathematical Journal},
     pages = {117--152},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a2/}
}
TY  - JOUR
AU  - Kostov, Vladimir
TI  - Discriminant Sets of Families of Hyperbolic Polynomials of Degree 4 and 5
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 117
EP  - 152
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a2/
LA  - en
ID  - SMJ2_2002_28_2_a2
ER  - 
%0 Journal Article
%A Kostov, Vladimir
%T Discriminant Sets of Families of Hyperbolic Polynomials of Degree 4 and 5
%J Serdica Mathematical Journal
%D 2002
%P 117-152
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a2/
%G en
%F SMJ2_2002_28_2_a2
Kostov, Vladimir. Discriminant Sets of Families of Hyperbolic Polynomials of Degree 4 and 5. Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 117-152. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a2/