Porosity and Variational Principles
Serdica Mathematical Journal, Tome 28 (2002) no. 1, pp. 37-46.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.
Keywords: Variational Principles, Well-posed Optimization Problems, Porous Sets, Porosity
@article{SMJ2_2002_28_1_a1,
     author = {Marchini, Elsa},
     title = {Porosity and {Variational} {Principles}},
     journal = {Serdica Mathematical Journal},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a1/}
}
TY  - JOUR
AU  - Marchini, Elsa
TI  - Porosity and Variational Principles
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 37
EP  - 46
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a1/
LA  - en
ID  - SMJ2_2002_28_1_a1
ER  - 
%0 Journal Article
%A Marchini, Elsa
%T Porosity and Variational Principles
%J Serdica Mathematical Journal
%D 2002
%P 37-46
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a1/
%G en
%F SMJ2_2002_28_1_a1
Marchini, Elsa. Porosity and Variational Principles. Serdica Mathematical Journal, Tome 28 (2002) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a1/