Compactness in the First Baire Class and Baire-1 Operators
Serdica Mathematical Journal, Tome 28 (2002) no. 1, pp. 1-36.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Keywords: Baire-1 Function, Baire-1 Operator, Rosenthal Compact, Rosenthal-Banach Compact, Polish Space, Angelic Space, Bounded Approximation Property
@article{SMJ2_2002_28_1_a0,
     author = {Mercourakis, S. and Stamati, E.},
     title = {Compactness in the {First} {Baire} {Class} and {Baire-1} {Operators}},
     journal = {Serdica Mathematical Journal},
     pages = {1--36},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a0/}
}
TY  - JOUR
AU  - Mercourakis, S.
AU  - Stamati, E.
TI  - Compactness in the First Baire Class and Baire-1 Operators
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 1
EP  - 36
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a0/
LA  - en
ID  - SMJ2_2002_28_1_a0
ER  - 
%0 Journal Article
%A Mercourakis, S.
%A Stamati, E.
%T Compactness in the First Baire Class and Baire-1 Operators
%J Serdica Mathematical Journal
%D 2002
%P 1-36
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a0/
%G en
%F SMJ2_2002_28_1_a0
Mercourakis, S.; Stamati, E. Compactness in the First Baire Class and Baire-1 Operators. Serdica Mathematical Journal, Tome 28 (2002) no. 1, pp. 1-36. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_1_a0/