Polynomial Automorphisms Over Finite Fields
Serdica Mathematical Journal, Tome 27 (2001) no. 4, pp. 343-350
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
It is shown that the invertible polynomial maps over a finite
field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in
the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1
it is shown that the tame subgroup of the invertible polynomial maps gives
only the even bijections, i.e. only half the bijections. As a consequence it
is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if
#S = q^(n−1).
Keywords:
Polynomial Automorphisms, Tame Automorphisms, Affine Spaces Over Finite Fields, Primitive Groups
@article{SMJ2_2001_27_4_a5,
author = {Maubach, Stefan},
title = {Polynomial {Automorphisms} {Over} {Finite} {Fields}},
journal = {Serdica Mathematical Journal},
pages = {343--350},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/}
}
Maubach, Stefan. Polynomial Automorphisms Over Finite Fields. Serdica Mathematical Journal, Tome 27 (2001) no. 4, pp. 343-350. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/