Polynomial Automorphisms Over Finite Fields
Serdica Mathematical Journal, Tome 27 (2001) no. 4, pp. 343-350.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Keywords: Polynomial Automorphisms, Tame Automorphisms, Affine Spaces Over Finite Fields, Primitive Groups
@article{SMJ2_2001_27_4_a5,
     author = {Maubach, Stefan},
     title = {Polynomial {Automorphisms} {Over} {Finite} {Fields}},
     journal = {Serdica Mathematical Journal},
     pages = {343--350},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/}
}
TY  - JOUR
AU  - Maubach, Stefan
TI  - Polynomial Automorphisms Over Finite Fields
JO  - Serdica Mathematical Journal
PY  - 2001
SP  - 343
EP  - 350
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/
LA  - en
ID  - SMJ2_2001_27_4_a5
ER  - 
%0 Journal Article
%A Maubach, Stefan
%T Polynomial Automorphisms Over Finite Fields
%J Serdica Mathematical Journal
%D 2001
%P 343-350
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/
%G en
%F SMJ2_2001_27_4_a5
Maubach, Stefan. Polynomial Automorphisms Over Finite Fields. Serdica Mathematical Journal, Tome 27 (2001) no. 4, pp. 343-350. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_4_a5/