First Order Characterizations of Pseudoconvex Functions
Serdica Mathematical Journal, Tome 27 (2001) no. 3, pp. 203-218.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.
Keywords: Generalized Convexity, Nonsmooth Function, Generalized Directional Derivative, Pseudoconvex Function, Quasiconvex Function, Invex Function, Nonsmooth Optimization, Solution Sets, Pseudomonotone Generalized Directional Derivative
@article{SMJ2_2001_27_3_a1,
     author = {Ivanov, Vsevolod},
     title = {First {Order} {Characterizations} of {Pseudoconvex} {Functions}},
     journal = {Serdica Mathematical Journal},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a1/}
}
TY  - JOUR
AU  - Ivanov, Vsevolod
TI  - First Order Characterizations of Pseudoconvex Functions
JO  - Serdica Mathematical Journal
PY  - 2001
SP  - 203
EP  - 218
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a1/
LA  - en
ID  - SMJ2_2001_27_3_a1
ER  - 
%0 Journal Article
%A Ivanov, Vsevolod
%T First Order Characterizations of Pseudoconvex Functions
%J Serdica Mathematical Journal
%D 2001
%P 203-218
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a1/
%G en
%F SMJ2_2001_27_3_a1
Ivanov, Vsevolod. First Order Characterizations of Pseudoconvex Functions. Serdica Mathematical Journal, Tome 27 (2001) no. 3, pp. 203-218. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a1/