Analog of Favard's Theorem for Polynomials Connected with Difference Equation of 4-th Order
Serdica Mathematical Journal, Tome 27 (2001) no. 3, pp. 193-202.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...
Keywords: Orthogonal Polynomials, Difference Equation
@article{SMJ2_2001_27_3_a0,
     author = {Zagorodniuk, S.},
     title = {Analog of {Favard's} {Theorem} for {Polynomials} {Connected} with {Difference} {Equation} of 4-th {Order}},
     journal = {Serdica Mathematical Journal},
     pages = {193--202},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a0/}
}
TY  - JOUR
AU  - Zagorodniuk, S.
TI  - Analog of Favard's Theorem for Polynomials Connected with Difference Equation of 4-th Order
JO  - Serdica Mathematical Journal
PY  - 2001
SP  - 193
EP  - 202
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a0/
LA  - en
ID  - SMJ2_2001_27_3_a0
ER  - 
%0 Journal Article
%A Zagorodniuk, S.
%T Analog of Favard's Theorem for Polynomials Connected with Difference Equation of 4-th Order
%J Serdica Mathematical Journal
%D 2001
%P 193-202
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a0/
%G en
%F SMJ2_2001_27_3_a0
Zagorodniuk, S. Analog of Favard's Theorem for Polynomials Connected with Difference Equation of 4-th Order. Serdica Mathematical Journal, Tome 27 (2001) no. 3, pp. 193-202. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_3_a0/