Equivariant Embeddings of Differentiable Spaces
Serdica Mathematical Journal, Tome 27 (2001) no. 2, pp. 107-114
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Given a differentiable action of a compact Lie group G on a
compact smooth manifold V , there exists [3] a closed embedding of V into
a finite-dimensional real vector space E so that the action of G on V may
be extended to a differentiable linear action (a linear representation) of G
on E. We prove an analogous equivariant embedding theorem for compact
differentiable spaces (∞-standard in the sense of [6, 7, 8]).
Keywords:
Affine Differentiable Spaces, Actions of Compact Lie Groups, Differentiable Algebras
@article{SMJ2_2001_27_2_a1,
author = {Rivas, R. and Gonz\'alez, J. and De Salas, J.},
title = {Equivariant {Embeddings} of {Differentiable} {Spaces}},
journal = {Serdica Mathematical Journal},
pages = {107--114},
year = {2001},
volume = {27},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/}
}
Rivas, R.; González, J.; De Salas, J. Equivariant Embeddings of Differentiable Spaces. Serdica Mathematical Journal, Tome 27 (2001) no. 2, pp. 107-114. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/