Equivariant Embeddings of Differentiable Spaces
Serdica Mathematical Journal, Tome 27 (2001) no. 2, pp. 107-114.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).
Keywords: Affine Differentiable Spaces, Actions of Compact Lie Groups, Differentiable Algebras
@article{SMJ2_2001_27_2_a1,
     author = {Rivas, R. and Gonz\'alez, J. and De Salas, J.},
     title = {Equivariant {Embeddings} of {Differentiable} {Spaces}},
     journal = {Serdica Mathematical Journal},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/}
}
TY  - JOUR
AU  - Rivas, R.
AU  - González, J.
AU  - De Salas, J.
TI  - Equivariant Embeddings of Differentiable Spaces
JO  - Serdica Mathematical Journal
PY  - 2001
SP  - 107
EP  - 114
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/
LA  - en
ID  - SMJ2_2001_27_2_a1
ER  - 
%0 Journal Article
%A Rivas, R.
%A González, J.
%A De Salas, J.
%T Equivariant Embeddings of Differentiable Spaces
%J Serdica Mathematical Journal
%D 2001
%P 107-114
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/
%G en
%F SMJ2_2001_27_2_a1
Rivas, R.; González, J.; De Salas, J. Equivariant Embeddings of Differentiable Spaces. Serdica Mathematical Journal, Tome 27 (2001) no. 2, pp. 107-114. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_2_a1/