Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems
Serdica Mathematical Journal, Tome 27 (2001) no. 1, pp. 67-90
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We present some results on the formation of singularities
for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut +
A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions
(weaker than genuine non-linearity), we prove that the first order derivative
of the solution blows-up in finite time.
Keywords:
Blow-up, Hyperbolic Systems
@article{SMJ2_2001_27_1_a1,
author = {Boiti, Chiara and Manfrin, Renato},
title = {Formation of {Singularities} for {Weakly} {Non-Linear} {N{\texttimes}N} {Hyperbolic} {Systems}},
journal = {Serdica Mathematical Journal},
pages = {67--90},
year = {2001},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/}
}
Boiti, Chiara; Manfrin, Renato. Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems. Serdica Mathematical Journal, Tome 27 (2001) no. 1, pp. 67-90. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/