Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems
Serdica Mathematical Journal, Tome 27 (2001) no. 1, pp. 67-90.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.
Keywords: Blow-up, Hyperbolic Systems
@article{SMJ2_2001_27_1_a1,
     author = {Boiti, Chiara and Manfrin, Renato},
     title = {Formation of {Singularities} for {Weakly} {Non-Linear} {N{\texttimes}N} {Hyperbolic} {Systems}},
     journal = {Serdica Mathematical Journal},
     pages = {67--90},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/}
}
TY  - JOUR
AU  - Boiti, Chiara
AU  - Manfrin, Renato
TI  - Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems
JO  - Serdica Mathematical Journal
PY  - 2001
SP  - 67
EP  - 90
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/
LA  - en
ID  - SMJ2_2001_27_1_a1
ER  - 
%0 Journal Article
%A Boiti, Chiara
%A Manfrin, Renato
%T Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems
%J Serdica Mathematical Journal
%D 2001
%P 67-90
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/
%G en
%F SMJ2_2001_27_1_a1
Boiti, Chiara; Manfrin, Renato. Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems. Serdica Mathematical Journal, Tome 27 (2001) no. 1, pp. 67-90. http://geodesic.mathdoc.fr/item/SMJ2_2001_27_1_a1/