Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis
Serdica Mathematical Journal, Tome 26 (2000) no. 4, pp. 353-358.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is shown that a Banach space X admits an equivalent uniformly Gateaux differentiable norm if it has an unconditional basis and X* admits an equivalent norm which is uniformly rotund in every direction.
Keywords: Unconditional Basis, Uniformly Gateaux Smooth Norms, Uniform Eberlein Compacts, Uniform Rotundity In Every Direction
@article{SMJ2_2000_26_4_a4,
     author = {Rychter, Jan},
     title = {Uniformly {G\^ateaux} {Differentiable} {Norms} in {Spaces} with {Unconditional} {Basis}},
     journal = {Serdica Mathematical Journal},
     pages = {353--358},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a4/}
}
TY  - JOUR
AU  - Rychter, Jan
TI  - Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 353
EP  - 358
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a4/
LA  - en
ID  - SMJ2_2000_26_4_a4
ER  - 
%0 Journal Article
%A Rychter, Jan
%T Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis
%J Serdica Mathematical Journal
%D 2000
%P 353-358
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a4/
%G en
%F SMJ2_2000_26_4_a4
Rychter, Jan. Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis. Serdica Mathematical Journal, Tome 26 (2000) no. 4, pp. 353-358. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a4/