Some Examples of Rigid Representations
Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 253-276.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Consider the Deligne-Simpson problem: give necessary and sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C) (resp. cj ⊂ gl(n,C)) so that there exist irreducible (p+1)-tuples of matrices Mj ∈ Cj (resp. Aj ∈ cj) satisfying the equality M1 . . .Mp+1 = I (resp. A1+. . .+Ap+1 = 0). The matrices Mj and Aj are interpreted as monodromy operators and as matrices-residua of fuchsian systems on Riemann’s sphere. We give new examples of existence of such (p+1)-tuples of matrices Mj (resp. Aj ) which are rigid, i.e. unique up to conjugacy once the classes Cj (resp. cj) are fixed. For rigid representations the sum of the dimensions of the classes Cj (resp. cj) equals 2n^2 − 2.
Keywords: Monodromy Group, Rigid Representation
@article{SMJ2_2000_26_3_a5,
     author = {Kostov, Vladimir},
     title = {Some {Examples} of {Rigid} {Representations}},
     journal = {Serdica Mathematical Journal},
     pages = {253--276},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/}
}
TY  - JOUR
AU  - Kostov, Vladimir
TI  - Some Examples of Rigid Representations
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 253
EP  - 276
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/
LA  - en
ID  - SMJ2_2000_26_3_a5
ER  - 
%0 Journal Article
%A Kostov, Vladimir
%T Some Examples of Rigid Representations
%J Serdica Mathematical Journal
%D 2000
%P 253-276
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/
%G en
%F SMJ2_2000_26_3_a5
Kostov, Vladimir. Some Examples of Rigid Representations. Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 253-276. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/