Some Examples of Rigid Representations
Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 253-276
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Consider the Deligne-Simpson problem: give necessary and
sufficient conditions for the choice of the conjugacy classes Cj ⊂ GL(n,C)
(resp. cj ⊂ gl(n,C)) so that there exist irreducible (p+1)-tuples of matrices
Mj ∈ Cj (resp. Aj ∈ cj) satisfying the equality M1 . . .Mp+1 = I (resp.
A1+. . .+Ap+1 = 0). The matrices Mj and Aj are interpreted as monodromy
operators and as matrices-residua of fuchsian systems on Riemann’s sphere.
We give new examples of existence of such (p+1)-tuples of matrices Mj
(resp. Aj ) which are rigid, i.e. unique up to conjugacy once the classes Cj
(resp. cj) are fixed. For rigid representations the sum of the dimensions of
the classes Cj (resp. cj) equals 2n^2 − 2.
Keywords:
Monodromy Group, Rigid Representation
@article{SMJ2_2000_26_3_a5,
author = {Kostov, Vladimir},
title = {Some {Examples} of {Rigid} {Representations}},
journal = {Serdica Mathematical Journal},
pages = {253--276},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/}
}
Kostov, Vladimir. Some Examples of Rigid Representations. Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 253-276. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a5/