Complete Systems of Hermite Associated Functions
Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 221-228.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of CR then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.
Keywords: Hermite Polynomials, Hermite Associated Functions, Completeness
@article{SMJ2_2000_26_3_a2,
     author = {Rusev, Peter},
     title = {Complete {Systems} of {Hermite} {Associated} {Functions}},
     journal = {Serdica Mathematical Journal},
     pages = {221--228},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a2/}
}
TY  - JOUR
AU  - Rusev, Peter
TI  - Complete Systems of Hermite Associated Functions
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 221
EP  - 228
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a2/
LA  - en
ID  - SMJ2_2000_26_3_a2
ER  - 
%0 Journal Article
%A Rusev, Peter
%T Complete Systems of Hermite Associated Functions
%J Serdica Mathematical Journal
%D 2000
%P 221-228
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a2/
%G en
%F SMJ2_2000_26_3_a2
Rusev, Peter. Complete Systems of Hermite Associated Functions. Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 221-228. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a2/