Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral
Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let Uc be the variety of associative algebras generated by the
algebra of all upper triangular matrices, the field being arbitrary. We prove
that the upper exponent of any subvariety V ⊂ Uc coincides with the lower
exponent and is an integer.
Keywords:
Associative Algebras With Polynomial Identities, Growth of Codimensions
@article{SMJ2_2000_26_2_a6,
author = {Petrogradsky, V.},
title = {Exponents of {Subvarieties} of {Upper} {Triangular} {Matrices} over {Arbitrary} {Fields} are {Integral}},
journal = {Serdica Mathematical Journal},
pages = {167--176},
year = {2000},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/}
}
Petrogradsky, V. Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral. Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/