Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral
Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let Uc be the variety of associative algebras generated by the
algebra of all upper triangular matrices, the field being arbitrary. We prove
that the upper exponent of any subvariety V ⊂ Uc coincides with the lower
exponent and is an integer.
Keywords:
Associative Algebras With Polynomial Identities, Growth of Codimensions
@article{SMJ2_2000_26_2_a6,
author = {Petrogradsky, V.},
title = {Exponents of {Subvarieties} of {Upper} {Triangular} {Matrices} over {Arbitrary} {Fields} are {Integral}},
journal = {Serdica Mathematical Journal},
pages = {167--176},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/}
}
TY - JOUR AU - Petrogradsky, V. TI - Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral JO - Serdica Mathematical Journal PY - 2000 SP - 167 EP - 176 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/ LA - en ID - SMJ2_2000_26_2_a6 ER -
Petrogradsky, V. Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral. Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/