Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral
Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176 Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library

Voir la notice de l'article

Let Uc be the variety of associative algebras generated by the algebra of all upper triangular matrices, the field being arbitrary. We prove that the upper exponent of any subvariety V ⊂ Uc coincides with the lower exponent and is an integer.
Keywords: Associative Algebras With Polynomial Identities, Growth of Codimensions
@article{SMJ2_2000_26_2_a6,
     author = {Petrogradsky, V.},
     title = {Exponents of {Subvarieties} of {Upper} {Triangular} {Matrices} over {Arbitrary} {Fields} are {Integral}},
     journal = {Serdica Mathematical Journal},
     pages = {167--176},
     year = {2000},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/}
}
TY  - JOUR
AU  - Petrogradsky, V.
TI  - Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 167
EP  - 176
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/
LA  - en
ID  - SMJ2_2000_26_2_a6
ER  - 
%0 Journal Article
%A Petrogradsky, V.
%T Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral
%J Serdica Mathematical Journal
%D 2000
%P 167-176
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/
%G en
%F SMJ2_2000_26_2_a6
Petrogradsky, V. Exponents of Subvarieties of Upper Triangular Matrices over Arbitrary Fields are Integral. Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a6/