On a New Approach to Williamson's Generalization of Pólya's Enumeration Theorem
Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 155-166.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Pólya’s fundamental enumeration theorem and some results from Williamson’s generalized setup of it are proved in terms of Schur- Macdonald’s theory (S-MT) of “invariant matrices”. Given a permutation group W ≤ Sd and a one-dimensional character χ of W , the polynomial functor Fχ corresponding via S-MT to the induced monomial representation Uχ = ind|Sdv/W (χ) of Sd , is studied. It turns out that the characteristic ch(Fχ ) is the weighted inventory of some set J(χ) of W -orbits in the integer-valued hypercube [0, ∞)d . The elements of J(χ) can be distinguished among all W -orbits by a maximum property. The identity ch(Fχ ) = ch(Uχ ) of both characteristics is a consequence of S-MT, and is equivalent to a result of Williamson. Pólya’s theorem can be obtained from the above identity by the specialization χ = 1W , where 1W is the unit character of W.
Keywords: Induced Monomial Representations of the Symmetric Group, Enumeration
@article{SMJ2_2000_26_2_a5,
     author = {Iliev, Valentin},
     title = {On a {New} {Approach} to {Williamson's} {Generalization} of {P\'olya's} {Enumeration} {Theorem}},
     journal = {Serdica Mathematical Journal},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a5/}
}
TY  - JOUR
AU  - Iliev, Valentin
TI  - On a New Approach to Williamson's Generalization of Pólya's Enumeration Theorem
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 155
EP  - 166
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a5/
LA  - en
ID  - SMJ2_2000_26_2_a5
ER  - 
%0 Journal Article
%A Iliev, Valentin
%T On a New Approach to Williamson's Generalization of Pólya's Enumeration Theorem
%J Serdica Mathematical Journal
%D 2000
%P 155-166
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a5/
%G en
%F SMJ2_2000_26_2_a5
Iliev, Valentin. On a New Approach to Williamson's Generalization of Pólya's Enumeration Theorem. Serdica Mathematical Journal, Tome 26 (2000) no. 2, pp. 155-166. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_2_a5/